Método y Aplicaciones de Redes Neuronales Artificiales en la Predicción de Variables Hidrológicas no Lineales

Dr. Ing. Oscar Dölling

Seminario Doctorado

Departamento de Ingeniería hidráulica y ambiental Escuela de Ingeniería P.U.C. Año 2005

Esquema de Red Neuronal Feedforward

Esquema de neurona artificial

Hacia otras neuronas con sites

Tipología de Redes neuronales Artificiales (ANNs)

- 1- (BP1) feedforward con método de aprendizaje backpropagtation momentum, Tangente Hiperbólica (capa oculta) y lineal (capa salida)
- 2- las redes (BP2) igual a la anterior pero con función de activación Sigmoidal (capas oculta y de salida)
- **3-** la red (SM) igual a la anterior pero con método de aprendizaje estocástico
- 4- (ELM) Red recurrente con método backpropagation (Red Elman)
- 5- (RBN) red Radial Basis Function.

Diseño de ANNs para predicción

Para desarrollar un modelo de predicción, primero debe ser definida la arquitectura de la red de neuronas.

Para ello hay que contestar a ciertos interrogantes, tales como:

1) Que tipo de fenómeno estoy modelando?

2) Cuantos neuronas de entrada voy a utilizar?

3) Cuantos neuronas de salida son necesarios?

Dependen del tipo de problema de predicción y de los datos disponibles

- 4) Cuantas capas ocultas y cuantas neuronas por capa son necesarios y. suficientes?
- 5) Que tipo de enlaces y cuantos son adecuados para armar la red?

Metodología de elaboración ANNs para predicción.

Para cubrir convenientemente todos los aspectos mencionados, se elaboró una metodología constituida por las siguientes etapas fundamentales:

- Análisis de Información
- Identificación de modelos candidatos
- Validación de modelos candidatos
- Selección del modelo óptimo

Recopilación y tratamiento de la información disponible:

• Conceptualización del proceso a modelar

• Recopilación de la información

• Análisis de consistencia y homogeneidad

Tratamiento estadístico de la información

Las series de datos pueden recibir el siguiente tratamiento previo:

•Análisis de estacionariedad en media (homogeneidad) (Análisis de tendencias - Transf. Por diferenciación)

•Análisis de consistencia

(Análisis de saltos Test de Fisher)

•Estandarización periódica

(Análisis de ciclos - Autocorrelograma y Periodograma)
•Análisis de Estacionariedad en varianza
(Heteroscedasticidad y Normalización.(Transformación)

BOX COX, logarítmica)

Análisis de datos de entrad

Análisis de homogeneidad (estacionariedad)
<u>Tendencias</u>
Cambios paulatinos y persistentes en alguna propiedad de la serie: Promedio, variancia.

Análisis de datos de entrad

Detección de Tendencias Test de aleatoriedad (random test) Dados tiempo t: 1, 2, 3,, t,.....T variable y: y1, y2, y3,yt,.....yT ubicación R: R1, R2, R3,Rj,.....Rn (orden ascendente)

Se busca si existe una relación significativa entre R y t analizando el Rango de Correlación.

$$r_{R,t} = 1 - \frac{6}{N(N^2 - 1)} \cdot \sum_{t=1}^{N} (R_t - t)^2$$

Análisis de estacionariedad de la media

Remover Tendencias determinísticas.

1) Tendencias Lineales

operador de diferencias de 1er orden $y = \Delta x$

$$y = [(x_2 - x_1), (x_3 - x_2), (x_4 - x_3), ..., (x_N - x_{N-1})]$$

2) Tendencias cuadráticas operador de diferencias de 2do. Orden $y = \Delta (\Delta x)$ $y = [((x_2-x_1) - (x_3-x_2)), ((x_4-x_3)-(x_5-x_4)),]$

Análisis de datos de entrad

Análisis de consistencia <u>Saltos</u> Cambios bruscos del Promedio. Test de Fischer.

 $\tau \alpha$ = estadígrafo t de Student α = nivel de significación grados de libertad : N₁-1

Selección de Unidades de entrada

• Análisis del grado de autocorrelación de las series de variables de salida (FAS y FAP).

 Análisis de correlación cruzada de variables de entrada y salida. (Funciones de correlación cruzada).

Análisis de Datos de entraç

Detección de Normalidad

Test Paramétricos

Suponen que X_t se distribuye Normal.

Test No paramétricos.

Dada una muestra de valores $(x_1, x_2, ...x_n)$ se desea saber si proviene de una variable Normal con probabilidad (1- α).

14/05/2007

Detección de Normalidad Test de Fisher

Estima la asimetría g de la muestra X_t y trata de comprobar la Ho de que $g \approx N(0, 6/N)$

$$g = \frac{\sum_{i=1}^{N} \left(x_i - x_i\right)^3}{(N-1)(N-2).S^3}$$

14/05/2007

$$S = \sqrt{\frac{\sum_{i=1}^{N} \left(x_i - x\right)^2}{N - 1}}$$

Análisis de Estacionariedad de la varianza

TRANSFORMACIÓN BOX - COX

$$Yt = \frac{Xt^{\lambda} - a}{\lambda}$$

Casos particulares

Si $\lambda = 1$; a = 0 Yt = Xt

Si
$$\lambda = 0$$
; a = 1 Yt = ln Xt

$$\lim_{\lambda \to 0} \frac{Xt^{\lambda} - 1}{\lambda} = \lim_{\lambda \to 0} \frac{Xt^{\lambda} \ln Xt}{1} = \ln Xt$$

Selección de λ

Si al aumentar el valor de la media (nivel de la serie), la dispersión o rango aumenta linealmente (1 a 1) aplicar $\lambda = 0$, si el rango aumenta en forma exponencial positiva aplicar $\lambda = -0.5$, si el rango se mantiene constante aplicar $\lambda = 1$.

Análisis de autocorrelación

Coeficiente de correlación:

donde

 $r_k = cov(X, Y)/s_x \cdot s_v; (-1 < r_k < 1)$ k = lag o retardo $X = X_i$ $Y = X_{i-k}$ $s_x = desviación típica de x_i$ $s_v = desviación típica de x_{i-k}$ N= Tamaño del muetsra $cov(X,Y) = \sum (x_i - xm_i) \cdot (x_{i-k} - xm_{i-k}) / (N-k)$ para i= 1,....,N-k

_ 1

Análisis de autocorrelación

Test Anderson Verificación de aleatoriedad

Para verificar si una serie es aleatoria, se puede analizar el correlograma de la serie a través del Test de independencia de Anderson, que acepta que el proceso es puramente aleatorio (ruido blanco), cuando las r_k se distribuyen según una Normal N(0,1/N) estableciendo los límites de significación del 95% como

$$\mathbf{r}_{0.95} = -1 \pm 1.96.(\text{N-K-1})^{1/2}$$

N-K

1

Análisis de autocorrelación

Verificación de Periodicidad

En el caso de series de tiempo es importante verificar si la variable presenta periodicidad. Una de las maneras de analizar periodicidad es a través de la Función de auto correlación o (correlograma). El cual define la estructura de dependencia de la serie.

Selección de las unidades de salida

 Se puede elegir en este paso entre dos enfoques según se trate de predecir un solo concepto (multiples entradas y una unidad de salida -MISO-) o representar varios conceptos en forma simultánea con un solo modelo (Multiples entradas y Multiples unidades de salida -MIMO). Armado de conjuntos de duplas de entrenamiento, validación y test.

- Selección de las variables de entrada (explicativas) y salida (explicadas).
- Armado de las duplas (patrones entrada-salida) En total se tendrán tantas duplas como ejemplos disponibles.
- Clasificación del ejemplo se puede hacer en tres grandes clases normal, por debajo de lo normal, por arriba de lo normal de acuerdo a los datos observados.
- Selección de ejemplos para el armado de duplas de entrenamiento – validación y Test.

Armado de conjuntos de duplas de entrenamiento, validación y test.

selección de las duplas

- entrenamiento 2/5 del total de duplas de cada clase.
- Validación 2/5 del total de duplas de cada clase.
- ♦ Test 1/5 del total de duplas de cada clase.

Armado de conjuntos de duplas de entrenamiento, validación y test.

- Los conjuntos empleados para el entrenamiento, validación y test serán los mismos para todos los tipos de redes candidatas.
- En el caso de contar con pocos ejemplos deberá utilizarse la metodología de Thomas Mitchel.

Identificación de candidatos

Identificación de la estructura de la capa oculta.

Proposición de modelos candidatos

Aprendizaje de modelos candidatos.

Selección de estrategia de entrenamiento

Selección del número de neuronas en la capa oculta:

 Para realizar la selección del número de unidades ocultas pueden utilizar los métodos : prueba y error, podado de nodos y enlaces o el algoritmo Cascade-Correlation desarrollado por Scott Falhman y Lebiere (1990).

Estrategia de Entrenamiento

La estrategia de entrenamiento se especifica en base a la definición de los siguientes aspectos:

- Algoritmo de Aprendizaje :(ej: Backpropagation mom.)
- Actualización de pesos: (on line, batch)
- Inicialización de pesos:(aleatorio, no aleatoria)
- Variación de parámetros de aprendizaje:(manual, programado)
- Presentación de duplas de entrenamiento:(en orden, aleatoria)
- Criterio de Término del aprendizaje:(Punto de Término)

- Las ANNs pueden ser usadas para aprender, por medio de un algoritmo de aprendizaje, a modificar algunos de los parámetros (pesos de los enlaces y desvíos) que describen los componentes de la estructura de la red.
- El conjunto de pesos modificables define un "espacio de parámetros" cuya dimensión está definida por el número de pesos a ajustar. Un modelo de red con un conjunto de pesos ajustables define un *espacio de hipótesis* que corresponde a una familia de funciones[Dean et al 1995].

Una vez definido el espacio de hipótesis, encontrar la mejor hipótesis dentro del espacio implica definir una *estrategia de control*, que permita aplicar reglas para encontrar una solución. En general esta estrategia se basa en establecer una función de error cuyo mínimo se busca, tal como en un problema de optimización no lineal.

 Para encontrar una solución óptima que satisfaga las expectativas de pronóstico se sugiere aplicar los métodos de aprendizaje: Backpropagation momentum (basado en el método del descenso de gradiente) para las redes feedforward; el método **Recurrent Cascade Correlation para el** entrenamiento de las redes Elman; el algoritmo de aprendizaje Radial Basis Learning para las redes del tipo radial Basis Function. [Zell el al –SNNS-1995].

- Tanto la función de inicialización de pesos y el modo de actualización de los mismos durante el entrenamiento, dependerá del tipo de método de aprendizaje elegido [Zell el al –SNNS- 1995].
- Se recomienda utilizar el Método de Montecarlo que permite inicializar la red generando pesos en forma aleatoria.

 Un aspecto muy importante a tener en cuenta es el criterio de terminación del entrenamiento con el objeto de evitar el fenómeno de sobreentrenamiento (overfitting). Para ello, en el caso particular de las redes feedforward entrenadas con el algoritmo backpropagation momentum se sugiere la estrategia de entrenamiento propuesta por Mitchell [Mitchel 1997 pp.127] destinada a casos con escasos ejemplos de entrenamiento.

Validación de candidatos

Pre - diagnóstico - Curvas de entrenamiento

Causas comunes de problemas de convergencia:

A) Problemas Estructurales

- incorrecta asignación de nodos de entrada
- inconsistencia en los datos
- Insuficientes nodos ocultos
- Demasiados nodos ocultos
- B) Mala estrategia de entrenamiento
- Overfitting
 Selección parámetros de entrenamiento y/o pesos iniciales
Validación y evaluación de la capacidad predictiva.

- El procedimiento de validación se basa en un conjunto de análisis a realizar sobre los residuos (valores calculados como la diferencia entre los valores de salida observados y los calculados por la red) generados por cada modelo para los distintos conjuntos (entrenamiento, validación y test).
- También se usa como indicador de comportamiento el número de ciclos necesario para lograr un entrenamiento que asegure una buena generalización.

Validación de Candidatos 🗗

Evaluación de capacidad predictiva

Concepto	Nombre	Fórmula	
Suma de errrores cuadráticos medios	SSE	$\sum_{i}^{j} (obs-calc)^{2} / N$	SSE vs ciclos
Error de orden 4	S4E	$\sum_{i} (obs - calc)^4$	S4E vs ciclos
Error Absoluto medio	MAE	$\frac{\sum_{i}^{j} (obs - calc) }{N}$	MAE vs ciclos
Raiz cuadrada de SSE	RMSE	$\sqrt{\frac{\sum_{i}^{j} (obs - calc)^{2}}{N}}$	RMSE vs ciclos
Coeficiente de Eficiencia	COE	$E = 1 - \left(\frac{(\text{Varianza residuos})}{(\text{varianza datos originales})}\right)$	COE vs ciclos
Varianza relativa promedio de los errores	ARV	$\frac{\sum_{i}^{j} (obs - calc)^{2}}{\sum_{i}^{j} (obs - prom.obs)^{2}}$	SSE vs ciclos
Eficiencia de ajuste del modelo	R^2	$\frac{\sum_{i}^{j} (calc - promobs)^{2}}{\sum_{i}^{j} (obs - promobs)^{2}}$	R^2 vs ciclos

Evaluación de capacidad predictiva

- S4E evalúa el ajuste del modelo a los valores máximos
- MAE es específico para evaluar el ajuste a los valores medios
- RMSE evalúa la varianza de los errores independientemente del tamaño de la muestra [Abrahart&See 1998]. Valores altos de RMSE pueden indicar problemas de generalización asociados generalmente a una mala identificación del número de neuronas ocultas o a un deficiente entrenamiento.

Selección del modelo óptimo:

- análisis visual de gráficos de series calculadas y observadas,
- análisis de dispersión gráfica de valores calculados vs valores observados
- Análisis de independencia y normalidad de residuos; un análisis de auto correlación y correlación cruzada de residuos y variables de entrada.
- % de predicciones correctas
- % de predicciones bajas entre 5,10 y 25% de los valores observados
- % predicciones altas entre 5,10 y 25% de datos observados
- % mayores al 25% de observados

Verificación del grado de ajuste

Visualización de resultados

Validación de Candidatos

Diagnóstico de problemas en la estructura del modelo (fórmulas)

Æ

-1

Diagnóstico de problemas en la estructura del modelo

Si el análisis de autocorrelación de la serie de residuos indica que un coeficiente de autocorrelación supera un determinado nivel de confianza, ello puede indicar problemas en la identificación de las variables de entrada o una arquitectura defectuosa de la red que no logra capturar toda la información predecible.

Selección del Modelo óptimo

Las propiedades deseables para el modelo óptimo se refieren a aquel que presente:

Menos problemas de convergencia en el entrenamiento.
Mejor capacidad de generalización.
Una serie de residuos con propiedades de "ruido blanco".
Menor número de parámetros a ajustar <u>(parsimonia)</u>
Menor número de ciclos de entrenamiento.
Mejor respuesta en situaciones extremas.

Principio de parsimonia

Para asegurar la capacidad de generalización, debemos evaluar el grado de parsimonia del modelo de red ajustado, se proponen los siguientes indicadores:

$$AIC = \ln(\frac{SSE}{2N}) + 2.\frac{Nw}{N} \text{ (criteriode información de Akaike)}$$
$$FPE = \frac{SSE}{2N} \frac{(N+N_w)}{(N-N_w)} \text{ (FinalPredictionError)}$$

N= número de ejemplos Nw= número de pesos SSE= error cuadrático medio

REDES NEURONALES Y TELEDETECCIÓN APLICADAS A LA DISTRIBUCIÓN ESPACIAL DE MATERIAL EN SUSPENSIÓN EN CUERPOS DE AGUA.

Mariana Pagot1, Oscar Dölling2, Andrés Rodríguez1, Felipe Niencheski3, Gerardo Hillman1, Mariano Corral1 y Claudia Oroná1.

Laboratorio de Hidráulica. Universidad Nacional de Córdoba. Argentina
 2 Dpto. de Hidráulica. Universidad Nacional de San Juan. Argentina
 3 Dpto. Química Oceonográfica. FURG – Brasil.

OBJETIVO GENERAL DEL ESTUDIO

Entrenar una Red Neuronal Artificial que prediga espacialmente la concentración de material en suspensión (MES) en la Laguna de Los Patos, Brasil, a partir de datos de reflectividad medidos con sensores remotos de la serie LANDSAT (5 y 7).

Figura 1: Ubicación esquemática de la región en estudio. Laguna de los Patos – Brasil.

Datos de campo

Se utilizaron datos de material en Suspensión (MES) medidos en 10 estaciones distribuidas uniformemente sobre el eje longitudinal de la Laguna. Estas mediciones fueron realizadas en 4 campañas de monitoreo durante los meses de marzo a noviembre de 1999, por la Fundación Universitaria de Río Grande (FURG), Brasil.

Datos satelitales

Reflectividad calculada en función de parámetros propios de las bandas (1-2-3 y 4) de los sensores remotos de la serie *LANDSAT (5 y 7)*; considerando además, las efemérides del satélite al momento de adquirir cada imagen.

Las imágenes disponibles fueron cedidas por la CONAE (Comisión Nacional de Actividades Espacial) a través del Instituto de Altos Estudios Espaciales "Mario Gulich". Se contó con 8 imágenes de la región en coincidencia con las campañas realizadas.

Cada imagen cubre un área de 180x180 km² por lo que se realizó un mosaico con 2 imágenes para analizar cada campaña.

Se procesaron 4 mosaicos de imágenes satelitales (2 por cada instante de muestreo) y se midieron sobre cada estación monitoreada los correspondientes datos de intensidades de píxeles (ND) filtrados espacialmente para promediar el error en la ubicación de dicha estación. La resolución de cada pixel depende de la banda analizada para este caso se utilizaron las bandas 1-2 – 3 y 4 con resolucion espacial de 30x30mts y una escala de grises (rango del numero digital ND) de 0 a 64 correspondiente a 8bits en la conversion Analog--Digital.

La expresión utilizada en la transformación de variables se presenta en la ecuación 1.

$$\rho_p = \frac{\pi \bullet L_\lambda \bullet d^2}{Esun\lambda \bullet \cos \Theta_s}$$

 ρ_p es la reflectividad en la Banda p L_{λ} : es la radiancia espectral (L=a1*ND+a2) ND: número digital de la imagen d: día juliano Esun λ : irradiancia solar (constante para cada satélite y cada banda) Θ_s : ángulo de elevación solar.

BANDA	longitud de onda (micrometros)	Espectro	Aplicación
1	0.45 - 0.50	azul	Agua / suelo (delimitacion de costas)
2	0.52 – 0.60	verde	Vegetación diferenciación de estados de Crecimiento y vigor.
3	0.63 – 0.69	rojo	Vegetación. Difer. Especies.
4	0.76 -0.90	Infrarojo cercano	Tipos de cultivos – vigor – contenido de biomasa – limites de cuerpos de agua – discriminacion de humedad de suelos.
5	1.55 – 1.75	Infrarojo medio	Discriminacion de nubes y nieve (contenido de humedad de suelo y contenido de humedad vegetal)
6	10.4 – 12.5	Infrarofo térmico	Analisis de stress en vegetacion. Discriminacion de humedades de suelo. Temperaturas de objetos.
7	2.08 - 2.35	Infrarojo medio	Discriminacion de minerales y rocas. También humedad suelo.

Tabla 1: Datos satelitales y de campo disponibles para desarrollar la red.

	Código	Fecha	Reflectividad (R)				M.E.S.
Dato Nro.	Estación	Imagen	Banda1 (R1)	Banda2 (R2)	Banda3 (R3)	Banda4 (R4)	ln (MES) (y)
1	R1		0,00000	0,03972	0,022	0,021	4,292
2	P1		0,00925	0,00000	0,000	0,000	4,090
3	P2	15 0 00	0,01658	0,05390	0,003	0,002	3,413
4	P3		0,01785	0,05390	0,000	0,010	3,360
5	P4		0,01020	0,05248	0,020	0,019	3,658
6	P5	17-Sep-99	0,00383	0,04681	0,037	0,029	4,084
7	P6		0,00638	0,04965	0,041	0,031	3,932
8	P7		0,01913	0,05674	0,045	0,031	2,982
9	P8		0,02168	0,05958	0,032	0,027	2,681
10	01		0,01020	0,04965	0,008	0,035	3,681

11	R1		0,014947	0,015542	0,015	0,011	2,608	
12	P1		0,010463	0,012433	0,003	0,008	2,964	
13	P2		0,000000	0,000000	0,000	0,000	3,555	
14	Р3		0,014947	0,015542	0,000	0,008	2,097	
15	P4		0,023916	0,024867	0,023	0,019	0,262	
16	Р5	17-Mar-99	0,017937	0,021758	0,030	0,019	1,224	
17	P6		0,017937	0,021758	0,018	0,015	1,155	
18	P7		0,017937	0,021758	0,003	0,004	1,163	
19	P8		0,014947	0,018650	0,025	0,019	2,063	
20	01		0,014947	0,018650	0,030	0,026	1,864	
21	R1		0,000000	0,000000	0,007	0,018	5,304	
22	P1	08-Ago-99	0,000000	0,005989	0,002	0,000	5,184	
23	P2		0,015839	0,047910	0,005	0,004	4,537	
24	Р3		0,031678	0,074859	0,000	0,007	3,934	
25	P4		0,000000	0,029944	0,010	0,004	5,175	
26	P5		0,023039	0,050904	0,015	0,011	4,492	
27	P6		0,025919	0,065876	0,032	0,029	4,257	
28	P7		0,050397	0,098814	0,019	0,018	2,655	
29	P8		0,047517	0,089831	0,022	0,033	3,345	
30	01		0,014399	0,044915	0,019	0,022	4,616	
31	R1		0,022296	0,053321	0,019	0,028	4,159	
32	P1		0,004459	0,030138	0,002	0,008	4,921	
33	P2		0,008918	0,032456	0,004	0,006	4,877	
34	P3		0,000000	0,000000	0,000	0,010	5,565	
35	P4	12-Nov-99	0,040133	0,076504	0,000	0,000	2,850	
36	P5		0,027870	0,060276	0,021	0,034	3,829	
37	P6		0,027870	0,060276	0,036	0,048	3,875	
38	P7		0,015607	0,039411	0,047	0,045	4,502	
39	P8		0,032330	0,067230	0,058	0,054	3,444	
40	01		0,030100	0,064912	0,053	0,048	3,509	

Tabla 2: Coeficientes de asimetría

intervalo de confianza [-0,75 y 0,75] para (a)= 0,05 y 40 datos

R1	R2	R3	R4	Y
0,73463	0,12259	0,69239	0,60495	-0,67231
Verifica	Verifica	Verifica	Verifica	Verifica

Tabla 3: Parámetros estadísticos típicos

	R1	R2	R3	R4	Ln(MES)
Mínimo:	0,00	0,00	0,00	0,00	0,26
Máximo:	0,050	0,099	0,058	0,054	5,57
Promedio:	0,017	0,041	0,018	0,019	3,50
Desviación típica:	0,01386	0,02535	0,01641	0,01465	1,25002
Nro. de observaciones:	40				

Figura 2: Funcion de autocorrelación simple series espaciales de reflectividades y Ln(MES).

En la mayoría de las series la dependencia espacial comprobada correspondió a 1 desfasaje (k = 1). Esto es debido a que las estaciones (ubicadas en dirección NE-SO) reciben desde el NE los mayores aportes por tributarios de la Laguna, del Río Guaiba, cuya concentración de sedimentos medida la en desembocadura de este río influye en la próxima estación ubicada hacia aguas abajo.

Selección del conjunto de ejemplos

1- División del conjunto de datos en clases de Entrenamiento, de Validación Y Test. (Además, se verificó que cada conjunto de entrenamiento cubriera el espectro de las posibles clases de entradas.)

2- Selección de la función sigmoide como función de activación de neurona.

3- Escalamiento de los datos de salida entre [-0,7 y 0,7]. (Los datos de entrada se encontraban originalmente dentro de este rango).

4- Luego se evaluaron tres estructuras principales de ejemplos:

a)Los datos de entrada corresponden a las series analizadas de reflectividades (R1, R2, R3 y R4) mientras que los de salida corresponden a los valores escalados del Ln (MES).

b) Los datos de entrada corresponden a las series analizadas (R1, R2, R3 y R4) junto con las series desplazadas un intervalo igual a una estación de monitoreo hacia el Sur de la Laguna para R2, R3 y R4, mientras que los de salida, corresponden a los valores escalados a Ln (MES).

c) Igual que (b) pero considerando una variable explicativa adicional relacionada con el índice (R1i/R2i) con i desde 1 a 40.

El punto (c) surgió del análisis de las regresiones múltiples lineales entre las variables explicativas y explicadas, las cuales para esta combinación arrojó un coeficiente de determinación (r²) igual a 0,71; el cual resulta mayor al obtenido con el resto de las alternativas evaluadas (por ejemplo la adición de las reflectividades en cada banda ya sea en forma separada o conjunta).

El criterio de selección de las alternativas se basó en la evaluación los residuos correspondientes.

Selección de la topología de red

Se evaluaron distintas arquitecturas de redes neuronales

RED [cantidad de neuronas de entrada, cantidad de neuronas ocultas, cantidad de neuronas de salida]:

RED [4,4,1] RED [4,3,1] RED [4,10,1] RED [7,4,1] RED [7,3,1] RED [8,4,1]

Estrategia de entrenamiento

- La estrategia seleccionada se aplicó en las distintas topologías mencionadas y se basaron en la definición de los siguientes aspectos: -algoritmo de aprendizaje: Backpropagation mom.
- -actualización de pesos: On-line
- -modo aleatorio de inicialización de pesos y presentación
- de las tuplas de entrenamiento

Entre los esquemas analizados, los resultados presentaron los siguientes errores medios de predicción entre los valores calculados por el programa SNNS y los valores objetivos correspondientes a cada ejemplo de entrenamiento:

> RED [4,4,1]: - 5,46% RED [4,3,1]: 4,52 % RED [4,10,1]: -8,9% **RED [7,4,1]: -0,45 %** RED [7,3,1]: -3,55 % RED [8,4,1]: -0,50 %

Se observa que las redes (d) y (f) son las que presentan menores errores de predicción.

En la Figura 5, se presenta la estructura de la red (d) [7, 4, 1], en la cual se observan los pesos calculados para cada enlace de

neuronas.

Figura 5: Estructura de la red [7, 4, 1] y pesos calculados.

Los pesos mayores corresponden a la variable explicativa R1, lo cual coincide con lo estimado a partir de las regresiones lineales realizadas entre las distintas variables explicativas y explicadas.

Figura 6: Los errores absolutos obtenidos para el conjunto de ejemplos de Test de la red [7, 4, 1] son menores del 1%.

Figura 8: Estructura de la red [8, 4, 1]

Para confirmar qué serie generaliza mejor dichos ejemplos se analizaron los residuos para verificar si se acercan o no a un proceso aleatorio puro "ruido blanco".

Así, en cada red [7, 4, 1] y [8, 4, 1] se verificó el test de Normalidad con valores -0,1551 y -0,0776, respectivamente, en un intervalo comprendido entre 0,7893 y -0,7893.

El análisis del autocorrelograma simple indicó una dependencia espacial de los dos primeros intervalos (Figura 9). Mientras que para la estructura [7, 4, 1] no se presentaron valores fuera del intervalo de confianza, definido en ambos casos para una probabilidad del 5% (Figura 10).

Figura 9: Autocorrelogramas de residuos Red [8, 4, 1]

Figura 10: Autocorrelograma de los residuos Red [7, 4, 1]

Validación. Análisis de los resultados

 Se verificó la Normalidad de los residuos del conjunto de validación con el test de Fischer.
 Se visualizó datos calculados vs observados

Figura 13: Curva de regresión líneal entre los valores medidos de (MES) y los generados con la red neuronal y el programa SNNS. Red [7, 4, 1] para el conjunto de Validación.

Figura 13: Curva de regresión lineal entre los valores medidos de (MES) y los generados con la red neuronal y el programa SNNS. Red [7, 4, 1] Para el conjunto de validación.
CAPACIDAD DE PRONÓSTICO CONJUNTO DE VALIDACIÓN

Figura 15: Comparación entre resultados medidos y generados para la red [7, 4, 1] de los ejemplos de Validación.

Figura 16: Comparación entre resultados medidos y generados para la red [8, 4, 1] de los ejemplos de Validación.

CAPACIDAD DE PRONÓSTICO CONJUNTO TOTAL DE DATOS

Figura 17: Valores medidos vs valores generados con la red [7, 4, 1]

Figura 18: Valores medidos vs valores generados con la red [8, 4, 1]

Selección del modelo óptimo

CONCLUSIONES

El modelo RED [7, 4, 1] tiende a subestimar el primer conjunto de ejemplos (de entrenamiento) y sobrestimar el resto (que incluye los datos de validación).

El modelo explica el 75 % de los ejemplos (escasos) disponibles.

La combinación resultante puede, aún, mejorarse, ya que el coeficiente de determinación fue menor a 0,90.

Es posible a futuro sumar datos de reflectividades de otros sensores con el objetivo de aumentar el número de ejemplos disponibles y mejorar la performance del modelo.

APLICACIÓN DE REDES NEURONALES PARA LA SIMULACIÓN DE LA EVOLUCIÓN DE NIVELES DE AGUA PARA LA LAGUNA DE MAR CHIQUITA

Hillman G.1, Dölling O.2, Pagot M.1, Pozzi C.1 y Plencovich G.1

* 1Laboratorio de Hidráulica. FCEFyN. UNC.

2 Departamento de Hidráulica. Universidad Nacional de San Juan. Argentina

Sistema endorreico de la República Argentina

Area de influencia de la laguna de Mar Chiquita - bañados del Río Dulce

PROVINCIAS INVOLUCRADAS Catamarca, Salta, Tucumán, Córdoba y Santiago del Estero

> CUENCAS DE APORTE Río Dulce Río Suquía Río Xanaes

Superficie total = 75000 km2 El entorno lagunar abarca un ecosistema cerrado: 10.000 km2

Rango de fluctuaciones en el sistema (2.000 a 6.000 km², entre niveles de 66 y 72 msnm),

Figura 1-1: Localización de la laguna de Mar Chiquita, en su extensión actual, y la región inferior de los Bañados del río Dulce.

DV = Qi. DT + AL (P-E). DT

donde:

DV variación de volumen de la laguna

Qi caudales aportados por los tributarios al sistema

P precipitación media areal sobre la laguna,

E evaporación,

AL área de la laguna,

DT paso de tiempo.

Variables Explicativas

RH: Caudales medios mensuales en Río Hondo.
RI: Caudales medios mensuales en Río Primero.
RII: Caudales medios mensuales en Río Segundo.
PN: Precipitaciones en el arco norte de la laguna de Mar Chiquita.
PS: Precipitaciones en el arco sur de la laguna de Mar Chiquita.
E: Evaporación en la laguna de Mar Chiquita.(Estación Miramar)

Variable explicada

H: niveles de la elevación de la superficie de agua en la Laguna de Mar Chiquita. (Miramar)

período de estudio

17 años (Nov 1980 - Ago 1997),

Figura 3. Precipitaciones y Evaporación en la laguna de Mar Chiquita

Figura 2. Caudales ingresantes a la laguna de Mar Chiquita

Figura 4. Niveles en la laguna de Mar Chiquita

TRATAMIENTO ESTADÍSTICO Y ANÁLISIS DE LA ESTRUCTURA TEMPORAL DE LAS SERIES

Los análisis realizados fueron:

- a. Estimadores muestrales.
- b. Análisis de saltos.
- c. Análisis de tendencia.
- d. Análisis de normalidad.
- e. Análisis de autocorrelogramas
- f. Análisis de correlogramas cruzados
- g. Selección del conjunto de variables
- explicativas a incluir en el modelo

Var	RH	RI	RII	PN	PS	E	н
n. observ.	202	202	202	202	202	202	202
Mínimo	1.40	1,89	0,64	0,00	0,00	26,59	68,52
Máximo	1030.00	68,98	54,76	295,13	311,38	211,60	71,40
Promedio	143.31	10,16	12,30	66,94	65,98	113,53	70,28
Desv. Típica	162.09	9,04	9,65	63,14	59,56	39,32	0,74
Coef. De Asimetría	2.22	3,01	1,16	1,05	1.24	0,00	-0,59
Int. Conf. 95%	0.34	0,34	0,34	0,34	0.34	0.34	0.34

Tabla 1. Estimadores muestrales de las propiedades estadísticas de las series involucradas

Test de Fischer a pesar de que se presentan saltos en las series se consideró que los datos son de calidad y que los saltos son reales.

Var	RH	RI	RII	PN	PS	Е	Н		
r _{R,t}	-0.205	-0.115	-0.090	-0.097	-0.092	0.038	-0.505		
r _{R,t} '	0.053	0.048	0.048	0.002	0.021	-0.025	-0.210		
r _{R,t} "							0.043		
Tabla 2. Valores de rRt y rRt' y rRt', en el análisis de tendencias de las variables involucradas.									

Se removieron las tendencias de las series con dif. De primer orden, solo la serie de niveles necesito aplicar diferencias de 2do orden.

ANALISIS de NORMALIDAD DE SERIES

Var	RH	RI	RII	PN	PS	Е	Н	+-95%
G	0.34	0.60	0.72	-0.48	-0.10	-0.26	0.06	0.34
Coef. BOX COX: b		0.20	0.20	0.20				0.34
Coef. BOX COX: a		0.10	0.10	0.10				0.34
gʻ		-0.11	0.19	-0.17				0.34
abla 3 Valores del coefic	ionto do se	imetría st oʻ	$^{\circ}$ w lose nos	rámetros ^{is}	$q^2 = w^{20} h^2 m$	tilizados	nara la tre	maformació

Tabla 3. Valores del coeficiente de asimetría "g" y los parámetros "a" y "b" utilizados para la transformación BOX COX.

Se normalizaron las series con transformaciones de tipo BOX COX

Análisis de la estructura de dependencia temporal: Correlogramas Cruzados respecto de H.

A las 6 variables explicativas se le sumaron 9 variables explicativas que representan la influencia de la historia del proceso en los niveles explicados.

Var	RH	RI	RII	PN	PS	E	н
	0	0	0	0	0	0	0
	6	4		-2	-4		-1
K				-1	-3		
					-2		
					-1		

Tabla 4. Valor de lag para las variables a utilizar en la Red Neuronal

ARMADO DE EJEMPLOS DE ENTRENAMIENTO, VALIDACIÓN Y TEST Total de ejemplos disponibles : 192 se dividió en 3 conjuntos por selección aleatoria el 60% para entrenamiento: 115 el 30% para validación 58 ejemplos

el 10%para test : 19 ejemplos

Luego de evaluar distintas arquitecturas, como mejor configuración resultó una red de tres Capas (15-6-1)

una visible de 15 neuronas (entrada)

una oculta de 6 neuronas

una neurona de salida

RED NEURONAL ENTRENADA RED 15-6-1

Nombre de la red: mch1561_NET-1 N°. De unidades: 22 (15 de entrada, 6 ocultas, 1 de salida) N°. De conexiones: 96 Función de aprendizaje: Std_Backpropagation Función de actualización: Topological_Order Iniciación de pesos: Aleatorio. Variación de parámetros de aprendizaje: Manual

Figura 11. Curva de entrenamiento. Error medio cuadrático (SSE) entre valores de entrenamiento (60% de la serie de ejemplos) y de validación (30% de la serie de ejemplos)

🗶 anna-ce	antrol pattern: 6	
STEPS	1 STEP 0 300 DKT 92321 E99	091 [393
CYCLES	15000 SUMALE PLL STOP TEST SHUFFLE EDITOR	2 21
PRITERH	1 05.275 NOD HEN SOTO H 4 F H	SUB PRT
	GEL SET USE \$4m/\$	
VELTO	2 URLD USE bin/3	
LEARN	0.2 0.0	AL FUNC
UPDRTE		EL PUNC
INIT	1.0 -1.0 2	AL FUNC
RENEP		EL FUNC
DONE Ros	wap, func; None	

Figura 12. Valores adoptados en cantidad de ciclos de cálculo y tasa de aprendizaje

PARAMETROS DE LA RED NEURONAL 15-6-1

	RH	RI	RH	PN	\mathbf{PS}	E	RH(6)	RI(4)	PN(-2)	PN(-1)	PS(-4)	PS(-3)	PS(-2)	PS(-1)	$-\mathbf{H}(\mathbf{I})$
NO1	-1,10	-0,38	0,13	-0,26	0,51	-0,14	4,17	-0,53	0,61	-0,23	-0,26	0,55	0,97	0,07	-0,23
NO2	0,45	-0,33	-0,20	-0,07	0,10	0,28	2,66	0,00	-0,49	0,27	-0,45	-0,10	-0,61	-0,12	0,35
NO3	-0,35	0,04	0,28	0,15	0,54	0,24	3,26	0,13	0,80	-0,09	0,06	0,18	0,72	0,41	0,02
N04	0,56	0,58	0,42	0,47	0,62	0,17	2,76	0,89	0,87	0,50	0,17	0,66	0,65	0,42	0,29
NO5	0,81	0,72	0,44	0,52	0,64	0,10	2,79	1,01	0,77	0,76	0,25	0,78	0,66	0,43	0,35
NO6	0,76	0,70	0,43	0,51	0,64	0,12	2,78	0,99	0,79	0,71	0,23	0,76	0,64	0,43	0,34
	Tabla 5.	Pesos	results	antes d	le la si	imula/	ción co/	n SNN	S entre	neuron	as visil	oles (va	riables)	v ocultas	

NO1 NO2 NO3 NO4 NO5 NO6

NS 2,83 3,79 1,89 0,00 -0,50 -0,40

Tabla 6. Pesos resultantes de la simulación con SNNS entre neuronas ocultas y la neurona de salida

	val. Originales	val. SNNS	Val. Reescalado	val. Cale. Reescalado	error
ejemplos	h	h*	H [msnm]	H [*] [msnm]	e
ej1	0,5457	0,5400	70,795	70,773	0,022
ej2	0,3685	0,3698	70,100	70,105	-9,005
ej3	0,5853	0,5867	70,950	70,956	-9,006
ej4	0,5342	0,5449	70,750	70,792	-0,042
cj5	0,6031	0,6046	71,020	71,026	-9,006
ejő	0,5546	0,5581	70,830	70,844	-0,014
ej7	0,4195	0,4237	70,300	70,316	-0,016
ej8	0,1938	0,1839	69,415	69,376	8,839
ej9	0,2161	0,2204	69,502	69,519	-0,017
ej10	0,3710	0,3741	70,110	70,122	-0,012
ej11	0,2117	0,2110	69,485	69,482	0,003
ej12	0,4718	0,4696	70,505	70,496	8,889
ej13	0,1594	0,1591	69,280	69,279	0,001
ej14	0,5215	0,5189	70,700	70,690	0,010
cj15	0,5559	0,5509	70,835	70,815	0,020
ej16	0,5215	0,4940	70,700	70,592	0,108
ej17	0,1339	0,1304	69,180	69,166	0,014
cj18	0,0574	0,0770	68,880	68,957	-0,077
ej19	0,3264	0,3245	69,935	69,928	0,007

Tabla 7. Resultados obtenidos en el proceso de calibración

valores observados versus calculados (TEST)

Figura 15. Test de Anderson para la verificación de la independencia de los residuos

CONCLUSIONES

Los resultados obtenidos y el buen ajuste logrado, demuestra la capacidad que ofrece la modelación con redes neuronales para representar procesos inerciales no lineales como es la variación de los niveles de la laguna.

El éxito de la modelación depende en gran medida de la calidad y cantidad de datos disponibles para los procesos de aprendizaje, validación y calibración.

El modelo presentado puede ser implementado, asegurando una resolución en el cálculo muy aceptable para intervalos de tiempo mensuales, resultando una herramienta de apoyo a la planificación estratégica de suma utilidad para las comunidades de la zona afectada.

MODELO DE PRONÓSTICO CAUDALES DIARIOS DEL RIO SAN JUAN - ESTACION KM 47.3

PROYECTO CICITCA Cod. I-291 / 2003 U.N.S.J.

Director: Oscar R. Dolling

Integrantes: Joaquín Riveros Patricia Oviedo Sergio Camargo

RECOPILACION DE INFORMACIÓN

Descripción de Datos	Período	Fuente
Caudal medio diario río San Juan en Km 47.3.	01/07/51 a 30/06/2003	EVARSA
Caudal medio diario río San Juan en Km 101.	01/10/71 – a 30/06/2003	EVARSA
Caudal medio diario río Los Patos en La Plateada.	01/07/51 – a 30/06/2003	EVARSA
Temperatura Bulbo humedo medio diario en Km47.3	01/09/93 y 30/09/2003	EVARSA
Temperatura Mínima Est. Km 47.3	01/09/93 – a 30/09/2003	EVARSA
Temperatura Máxima Est. Km 47.3	01/09/93 – a 30/09/2003	EVARSA
Tanque Evaporación Km47.3	01/09/93 a 30/09/2003	EVARSA
Velocidad Viento Km 47.3	01/09/93 y 30/09/2003	EVARSA
Evaporación diaria Km47.3	01/09/93 a 30/06/2003	EVARSA
Humedad diaria Km47.3	01/09/93 a 30/09/2003	EVARSA
Precipitación diaria Km47.3	01/09/93 a 30/09/2003	EVARSA
Caudal Medio Diario río Los Patos Est. Alvarez Condarco.	01/07/57 a 30/06/2003	EVARSA
Caudal Medio Diario río Castaño, Castaño Nuevo.	01/07/51 a 02/07/1986	EVARSA
Temperatura Bulbo seco medio diario en Km47.3	01/09/93 y 30/09/2003	EVARSA
Temperatura Máxima Est. Met. Pachón	09-01-81 a 16/12/1997	Dto. Hidráulica
Temperatura Mínima Est. Met. Pachón	09-01-81 a 16/12/1997	Dto. Hidráulica
Temperatura Promedio Est. Met. Pachón	09-01-81 a 16/12/1997	Dto. Hidráulica
Datos de niveles freáticos Valle Tulum	01-03-91 a 01-10-95	Dto. Hidráulica

VARIABLES INCLUIDAS EN EL ANÁLISIS

VAR47KM: Caudales diarios estación de aforo KM47,3.

VAR101KM: Caudales diarios estación de aforo KM101.

VARPLATE: Caudales diarios estación de aforo La Plateada.

VARPP: Precipitación líquida estación Pachón.

VARNC: Precipitación sólida estación Pachón.

VARNA: Precipitación sólida acumulada, estación Pachón.

VARTMAX: Temperatura máxima, estación Pachón.

VARTMIN: Temperatura mínima, estación Pachón

VARTPROM: Temperatura promedio, estación Pachón.

VARIABLES INCLUIDAS EN EL ANÁLISIS

Período de Análisis 1981 a 1997

6209 datos diarios

NOTA:

La serie de aforos diarios de la estación Km47.3 presenta un período de 15 días en los cuales no se han medido caudales. Estos corresponden al período comprendido del 1 de enero de 1995 a 15 de enero del mismo año. Se relleno ajustando curvas de regresion lineal entre estaciones.

Figura N° 4.1: Representación de los caudales de las estaciones de aforo 47km y 101km, se representa la línea de tendencia.

Figura N° 4.2: dispersión de datos correspondientes a las estaciones de Aforo 101km y La Plateada, también se graficó la recta de regresión con su expresión incluida en el figura.

Tabla N° 4.1: Valores de máximos y mínimos del Río San Juan período 1981 hasta 1997.

ESTACIÓN DE AFORO	MÁXIMO (m ³ /seg)	MÍNIMO (m ³ /seg)
Estación 47.3km	663,14	17,92
Estación 101km	795,00	14,85
Estación La Plateada	739,82	6,56

Tabla N° 4.2: Caudales medios correspondiente a las tres estaciones de aforo período de 1981 a 1997.

Estación de Aforo	Caudal Promedio (m ³ /seg)
Estación 47,3km	69,02
Estación 101km	68,02
La Plateada	51,5

Tabla N° 4.4: Desviación Estándar de las estaciones de aforo.

Estación de Aforo	Desviación Estándar
Estación 47,3km	64,3095
Estación 101km	64,7877
La Plateada	65,2712

Tabla N° 5: Coeficientes de asimetría de las estaciones de aforo, se puede ver que existe un fuerte sesgo de los valores, por lo tanto se debe realizar una normalización de los datos observados.

Estación de Aforo	Coeficiente de Asimetría
Estación 47,3km	3,4201
Estación 101km	3,5387
La Plateada	3,8994

Figura N° 4.3: Caudales máximos, mínimos y medios, para realizar esta grafica se realizó una agregación de datos cuatrimestral.

Figura N° 4.7c: Test de Fisher correspondiente a la Plateada.

Figura N°4. 7a: Test de Fisher para el aforo 101km.

FiguraN°4.7b:TestdeFishercorrespondiente47,3km.

Figura N° 4.8a: Q vs T para Período donde se registró el salto mediante el test de Fisher.

Figura Nº 4.8b: Representación del la estación de aforo La Plateada y 101km

Gráfica en el salto de F

Figura N° 4.4: Autocorrelación parcial serie caudales estación 47,3km.

Figura N° 4.5: Correlograma parcial serie caudales estación de aforo La Plateada.

Figura N°4.6: Correlograma serie de caudales estación de aforo 101km.

Tabla 7.1 : Planilla de Correlación cruzada entre variables

				Correla	ations					
		VAR47KM	VAR111KM	VARPLATE	VARPP	VARNC	VARNA	VARTMAX	VARTMIN	VARTPROM
VAR47KM	Pearson Correlation	1,000	,986**	,857**	-,063**	-,061**	-,068**	,250**	,229**	,261**
	Sig. (2-tailed)	,	,000	,000	,000	,000	,000	,000	,000	,000
	Ν	6209	6209	6209	6209	6206	6209	6186	6186	6186
VAR111KM	Pearson Correlation	,986**	1,000	,847**	-,065**	-,063**	-,076**	,264**	,243**	,275**
	Sig. (2-tailed)	,000	,	,000	,000	,000	,000	,000	,000	,000
	Ν	6209	6209	6209	6209	6206	6209	6186	6186	6186
VARPLATE	Pearson Correlation	,857**	,847**	1,000	-,064**	-,060**	-,063**	,241**	,215**	,248**
	Sig. (2-tailed)	,000	,000	,	,000	,000	,000	,000	,000	,000
	Ν	6209	6209	6209	6209	6206	6209	6186	6186	6186
VARPP	Pearson Correlation	-,063**	-,065**	-,064**	1,000	,893**	,196**	-,287**	-,161**	-,248**
	Sig. (2-tailed)	,000	,000	,000	,	,000	,000	,000	,000	,000
	Ν	6209	6209	6209	6209	6206	6209	6186	6186	6186
VARNC	Pearson Correlation	-,061**	-,063**	-,060**	,893**	1,000	,159**	-,255**	-,152**	-,225**
	Sig. (2-tailed)	,000	,000	,000	,000	,	,000	,000	,000	,000
	Ν	6206	6206	6206	6206	6206	6206	6183	6183	6183
VARNA	Pearson Correlation	-,068**	-,076**	-,063**	,196**	,159**	1,000	-,441**	-,424**	-,468**
	Sig. (2-tailed)	,000	,000	,000	,000	,000	,	,000	,000	,000
	Ν	6209	6209	6209	6209	6206	6209	6186	6186	6186
VARTMAX	Pearson Correlation	,250**	,264**	,241**	-,287**	-,255**	-,441**	1,000	,709**	,937**
	Sig. (2-tailed)	,000	,000	,000	,000	,000	,000	,	,000	,000
	Ν	6186	6186	6186	6186	6183	6186	6186	6186	6186
VARTMIN	Pearson Correlation	,229**	,243**	,215**	-,161**	-,152**	-,424**	,709**	1,000	,910**
	Sig. (2-tailed)	,000	,000	,000	,000	,000	,000	,000	,	,000
	Ν	6186	6186	6186	6186	6183	6186	6186	6186	6186
VARTPROM	Pearson Correlation	,261**	,275**	,248**	-,248**	-,225**	-,468**	,937**	,910**	1,000
	Sig. (2-tailed)	,000	,000	,000	,000	,000	,000	,000	,000	,
	Ν	6186	6186	6186	6186	6183	6186	6186	6186	6186

 $^{\star\star}\cdot$ Correlation is significant at the 0.01 level (2-tailed).

Correlación Cruzada entre Km 47.3 y Variables explicativas

Resultado del Análisis de Correlación cruzada Variables Explicativas:

- •Caudal de la estación de aforo KM101 para lag = -2
- •Caudal de la estación de aforo La Plateada para lag = -2
- •Temperatura máxima tomadas en la estación Pachón para lag= -3
- Temperatura mínima tomadas en la estación Pachón lag = -3
- •Temperatura promedio tomadas en la estación Pachón = -3
- Precipitación líquida tomadas en la estación Pachón = -3
- •Precipitación sólida tomadas en la estación Pachón = -3
- Precipitación sólida acumulada tomadas en la estación Pachón = -3
 La variable explicada es:

•Caudal de la estación de aforo KM47,3 para lag = 0

KM47 ANN 8-2-1

KM47 ANN 8-3-1

KM47 AN	IN 8-3-1
STEPS 1 INIT RESET ERROR INFO	
CYCLES 10000 SINGLE ALL STOP TEST SHUFFLE OPTIONS act	
DEL SET USE Kn47 test	
VALID 2 VALID USE Kn47 valida	
	0.023 2 7.3233 10 10 5.185 0.045
INIT 1.0 -1.0 SEL FUNC	-4.1/1 0.816 -1.013 9.692 3
Looke Init, tunc; Kandomize_Meignts	0.840 0.840 0.2244 0.382
DONE CLEAR Scale X: () Scale Y: () Display: SSE	9.000 /-0.537/ 9.000 /-0.434
0.45	0,490
0.35-	6 ////-0.001
0.35	-6.882//
0.15-	0.351 8_ 3
0.10- 0.85-	-0.470
8.00 0 1000 2000 3000 4000 5000 6000 7000 8000	

Tabla 7.3: estadígrafos serie de residuos (errores respecto al valor observado en %) conjunto de Test para las redes entrenadas

Datos	847	Datos	
Desviación %	15,3800537	Desviación %	34,18
Promedio %	-0,2764287	Promedio %	58,34
Mínimo %	-43,75	Mínimo %	-32,71
Máximo %	68,1845966 ANN 8-0-1	Máximo %	299,969438 ANN 8-1-1
Datas	Q17	Datos	
Datos	847	Datos	
Desviación %	8,26183437	Desviación %	12,
Promedio %	-3,03025274	Promedio %	-2,:
		Nímina a 0/	-37.
Mínimo %	-38,8553659	MIIIIIIIO %	
Mínimo %	-38,8553659		175,672372

Figura 7.10: Gráficas de comparación entre valor observado y calculado de la serie de residuos perteneciente a Test. Se incluye recta de regresión y su ecuación.

Figura 7.11: Gráficas de comparación entre valor observado (azul) y pronosticado (rosado) para las 4 redes de mejor resultado.